
INT 305 Assignment 1

(The deadline is 30st of Oct.) 

1. Please write down the whole derivation process to obtain the gradient for logistic regression. 

(30%)

The logistic model is: 𝑧 = 𝑤⊤𝑥. 

And the activation function is: 𝑦 =
1

(1+𝑒−𝑧)

The loss function is: ℒ𝐶𝐸(𝑦, 𝑡) = −𝑡log(𝑦) − (1 − 𝑡)log(1 − 𝑦) 

To optimize the model, we should update the weight 𝑤 by using gradient descent. 

Therefore, by using the chain rule: 

𝜕ℒ𝐶𝐸

𝜕𝑤𝑗
=

𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑤𝑗

[Step1] Because ℒ𝐶𝐸(𝑦, 𝑡) = −𝑡log(𝑦) − (1 − 𝑡)log(1 − 𝑦): 

𝜕ℒ𝐶𝐸

𝜕𝑦
=

𝜕[−𝑡log(𝑦)]

𝜕𝑦
−

𝜕[(1 − 𝑡)log(1 − 𝑦)]

𝜕𝑦

 = (−𝑡 ⋅
1

𝑦
) −

𝜕[(1 − 𝑡)log(1 − 𝑦)]

𝜕(1 − 𝑦)
⋅

𝜕(1 − 𝑦)

𝑦

 = (−𝑡 ⋅
1

𝑦
) − [(1 − 𝑡) ⋅

1

(1 − 𝑦)
] ⋅ (−1)

 = (−𝑡 ⋅
1

𝑦
) − [−

(1 − 𝑡)

(1 − 𝑦)
]

 = (−
𝑡

𝑦
+

1 − 𝑡

1 − 𝑦
)

[Step2] Because 𝑦 =
1

(1+𝑒−𝑧)
: 

𝜕𝑦

𝜕𝑧
=

𝜕 [
1

(1 + 𝑒−𝑧)
]

𝜕(1 + 𝑒−𝑧)
⋅

𝜕(1 + 𝑒−𝑧)

𝜕𝑧

= −(1 + 𝑒−𝑧)−2 ⋅ (−𝑒−𝑧)

=
𝑒−𝑧

(1 + 𝑒−𝑧)(1 + 𝑒−𝑧)

=
1

(1 + 𝑒−𝑧)
⋅

(1 + 𝑒−𝑧) − 1

(1 + 𝑒−𝑧)
⇒ 𝑦(1 − 𝑦)

And 𝑧 = 𝑤⊤𝑥 : 

𝜕𝑧

𝜕𝑤𝑗
=

𝜕(𝑤𝑗𝑥𝑗)

𝜕𝑤𝑗
= 𝑥𝑗 

[Step3] Therefore: 



𝜕ℒ𝐶𝐸

𝜕𝑤𝑗
=

𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑤𝑗

= (−
𝑡

𝑦
+

1 − 𝑡

1 − 𝑦
) ⋅ 𝑦(1 − 𝑦) ⋅ 𝑥𝑗

= [−𝑡(1 − 𝑦) + (1 − 𝑡) ⋅ 𝑦] ⋅ 𝑥𝑗

= (−𝑡 + 𝑡𝑦 + 𝑦 − 𝑡𝑦) ⋅ 𝑥𝑗

= (𝑦 − 𝑡) ⋅ 𝑥𝑗

[Step4] Finally, we can get the gradient of 𝑤, then we need to update weight 𝑤: 

Because: 𝒥 =
1

𝑁
∑ ℒ𝐶𝐸

𝑁

𝑖=1

 thus: 𝑤𝑗 ← 𝑤𝑗 − 𝛼
𝜕𝒥

𝜕𝑤𝑗

= 𝑤𝑗 −
𝛼

𝑁
∑(𝑦(𝑖) − 𝑡(𝑖))

𝑁

𝑖=1

𝑥𝑗
(𝑖)

2. Please   write   down  the   whole   derivation   process   to   obtain   the   gradient  for  multiclass 

classification with softmax. (40%)

The model function is: 𝑧 = 𝑊𝑥, 

⇒ 𝑧𝑘 = 𝑤𝑘 ⋅ 𝑥

The Softmax function is: 𝑦 = softmax(𝑧) 

⇒ 𝑦𝑘 =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘′
𝑘′

The cross-entropy loss function is: ℒ𝐶𝐸(𝑦, 𝑡) = − ∑ 𝑡𝑘
𝐾
𝑘=1 log𝑦𝑘 

       = −𝑡⊤(log𝑦) 

To optimize the model, we should update the weight 𝑤 by using gradient descent. 

Therefore, by using the chain rule: 

𝜕ℒ𝐶𝐸

𝜕𝑤𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧𝑘
⋅

𝜕𝑧𝑘

𝜕𝑤𝑘

[Step1] Because ℒ𝐶𝐸 = −𝑡⊤(log𝑦):

𝜕ℒ𝐶𝐸

𝜕𝑦
=

𝜕[−𝑡⊤(log𝑦)]

𝜕𝑦

• Since after one-hot encoding, for classification task with 𝐾 classes, 𝑡𝑘 is a 𝐾-

dimensional vector.

• Only the position of the correct class is 1, and the rest is 0. So, here are two

cases: for correct class 𝑇, 𝑡𝑇 = 1, 𝑡𝑚≠𝑇 = 0.

• According to the function ℒ𝐶𝐸(𝑦, 𝑡) = − ∑ 𝑡𝑘
𝐾
𝑘=1 log𝑦𝑘, we only need to

consider the condition of 𝑡𝑇, because the rest condition will get 0. For the

same reason, we only need to consider 𝑦𝑇 as well.

Therefore, ℒ𝐶𝐸 = −𝑡𝑇(log𝑦𝑇) = −log𝑦𝑇: 

𝜕ℒ𝐶𝐸

𝜕𝑦𝑇
=

𝜕(−log𝑦𝑇)

𝜕𝑦𝑇
= −

1

𝑦𝑇



[Step2] Because 𝑦𝑘 =
𝑒𝑧𝑘

∑ 𝑒
𝑧

𝑘′
𝑘′

: 

𝜕𝑦

𝜕𝑧𝑘
=

𝜕𝑦𝑇

𝜕𝑧𝑘
=

𝜕𝑦𝑘

𝜕𝑧𝑘
=

𝜕 (
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘′
𝑘′

)

𝜕𝑧𝑘

There are also two cases: 

(1) While 𝑇 = 𝑘:

𝜕𝑦𝑇

𝜕𝑧𝑘
=

𝜕𝑦𝑘

𝜕𝑧𝑘
=

𝜕 (
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘′
𝑘′

)

𝜕𝑧𝑘

 =
𝑒𝑧𝑘 ⋅ ∑ 𝑒𝑧𝑘′

𝑘′ − 𝑒𝑧𝑘 ⋅
𝜕(∑ 𝑒𝑧𝑘′

𝑘′ )
𝜕𝑧𝑘

(𝛴𝑘′𝑒𝑧𝑘′ )2

Because 𝑧𝑘 is one of 𝑧𝑘′, so: 

𝜕(∑ 𝑒
𝑧

𝑘′
𝑘′ )

𝜕𝑧𝑘
=

𝜕(𝑒𝑧1+⋯+𝑒𝑧𝑘+⋯+𝑒𝑧𝑛)

𝜕𝑧𝑘
= 𝑒𝑧𝑘 

Thus: 

𝜕𝑦𝑇

𝜕𝑧𝑘
=

𝜕𝑦𝑘

𝜕𝑧𝑘
=

𝑒𝑧𝑘 ⋅ ∑ 𝑒𝑧𝑘′
𝑘′ − 𝑒𝑧𝑘 ⋅ 𝑒𝑧𝑘

(∑ 𝑒𝑧𝑘′
𝑘′ )2

 =
𝑒𝑧𝑘(∑ 𝑒𝑧𝑘′

𝑘′ − 𝑒𝑧𝑘)

∑ 𝑒𝑧𝑘′
𝑘′ ⋅ ∑ 𝑒𝑧𝑘′

𝑘′

 = 𝑦𝑘(1 − 𝑦𝑘)

(2) While 𝑇 ≠ 𝑘:

𝜕𝑦𝑇

𝜕𝑧𝑘
=

𝜕 (
𝑒𝑧𝑇

∑ 𝑒𝑧𝑘′
𝑘′

)

𝜕𝑧𝑘

 =
0 − 𝑒𝑧𝑇 ⋅ 𝑒𝑧𝑘

(∑ 𝑒𝑧𝑘′
𝑘′ )2

 =
−𝑒𝑧𝑇 ⋅ 𝑒𝑧𝑘

∑ 𝑒𝑧𝑘′
𝑘′ ⋅ ∑ 𝑒𝑧𝑘′

𝑘′

 = −𝑦𝑇 ⋅ 𝑦𝑘

[Step3] Because 𝑧𝑘 = 𝑤𝑘 ⋅ 𝑥: 

𝜕𝑧𝑘

𝜕𝑤𝑘
=

𝜕(𝑤𝑘 ⋅ 𝑥)

𝜕𝑤𝑘
= 𝑥 

[Step4] Because we have two cases of 
𝜕𝑦

𝜕𝑧𝑘
, so we should consider them both when 

calculate 
𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧𝑘
. 

(1) While 𝑇 = 𝑘 𝑜𝑟 𝑡𝑘 = 1:



𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑧𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑦𝑇
⋅

𝜕𝑦𝑇

𝜕𝑧𝑘

= −
1

𝑦𝑘
⋅ 𝑦𝑘(1 − 𝑦𝑘)

= 𝑦𝑘 − 1

= 𝑦𝑘 − 𝑡𝑘

 

(2) While 𝑇 ≠ 𝑘 𝑜𝑟 𝑡𝑘 = 0:

𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑧𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑦𝑇
⋅

𝜕𝑦𝑇

𝜕𝑧𝑘

= −
1

𝑦𝑇
⋅ (−𝑦𝑇 ⋅ 𝑦𝑘)

= 𝑦𝑘

= 𝑦𝑘 − 0

= 𝑦𝑘 − 𝑡𝑘

Therefore, the result of 
𝜕ℒ𝐶𝐸

𝜕𝑧𝑘
 are both 𝑦𝑘 − 𝑡𝑘. 

[Step5] Gradient descent updates can be derived for each row of 𝑤: 

𝜕ℒ𝐶𝐸

𝜕𝑤𝑘
=

𝜕ℒ𝐶𝐸

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑧𝑘
⋅

𝜕𝑧𝑘

𝜕𝑤𝑘

=
𝜕ℒ𝐶𝐸

𝜕𝑧𝑘
⋅

𝜕𝑧𝑘

𝜕𝑤𝑘

= (𝑦𝑘 − 𝑡𝑘) ⋅ 𝑥

Now, we can get the gradient of 𝑤, then we need to update weight 𝑤: 

 Because: 𝒥 =
1

𝑁
∑ ℒ𝐶𝐸

𝑁

𝑘=1

 thus: 𝑤𝑘 ← 𝑤𝑘 − 𝛼
𝜕𝒥

𝜕𝑤𝑘

= 𝑤𝑘 −
𝛼

𝑁
∑ (𝑦𝑘

(𝑖)
− 𝑡𝑘

(𝑖)
)

𝑁

𝑖=1

𝑥(𝑖)

3. Please  compare  the  SVM  loss  and  Softmax  loss  for  multiclass  classification,  please  explain 

which one is better? (30%)

 Result: The Softmax loss is better for multiclass classification. 

Cell 1 Cell 2 Cell 3 

Example 1 10 -2 3 

Example 2 10 9 9 

Example 3 10 -100 -100



For example, there is a multiclass classification task with 3 cells. And we sample 3 

training examples, their scores are shown above (cell 1 is label). 

Then we calculate SVM loss and Softmax loss for these three examples respectively. 

The formula of Softmax loss is: 

𝐿𝑖 = −log (
𝑒𝑠𝑦𝑖

∑ 𝑒𝑠𝑗
𝑗

) 

The formula of SVM loss is: 

𝐿𝑖 = ∑ max

𝑗≠𝑦𝑖

(0, 𝑠𝑗 − 𝑠𝑦𝑖
+ 1)

The results are shown below: 

Cell 1 Cell 2 Cell 3 SVM Softmax 

Example 1 10 -2 3 0 0.4E-3 

Example 2 10 9 9 0 0.24 

Example 3 10 -100 -100 0 0 

It can be seen from the results that SVM loss cannot reflect the degree of model 

optimization precisely. When using SVM Loss to optimize the model, we may only find 

the local optimal solution. Because after obtaining a solution, SVM Loss will become 0. 

However, Softmax loss doesn't have that problem, it is a good reflection of the current 

model. Moreover, even if we find a solution, we can continue to optimize until we find 

the optimal solution. 

Therefore, the Softmax loss is better than SVM loss for multiclass  classification. 

<Python process of Q3> 



 

class SoftmaxLoss(object): 

    def expect(n): 

        L0 = [] 

        for i in n: 

            L0.append(np.exp(i)) 

        return L0 

 

    def correct(n): 

        L0 = [] 

        for i in n: 

            x = np.log10(i) 

            if x == 0: 

                L0.append(np.log10(i)) 

            else: 

                L0.append(-np.log10(i)) 

        return L0 

 

    def normalize(n): 

        L0 = [] 

        for i in n: 

            L0.append(i / np.sum(n)) 

        return L0 

 

 

class SVMLoss(object): 

    def formula(n): 

        return max(0, n[1] - n[0] + 1) + max(0, n[2] - n[0] + 1) 

 

 

if __name__ == "__main__": 

    L = [[10, -2, 3], 

         [10, 9, 9], 

         [10, -100, -100]] 

    L1 = [] 

    L2 = [] 

    for i in L: 

        ex = SoftmaxLoss.expect(i) 

        no = SoftmaxLoss.normalize(ex) 

        co = SoftmaxLoss.correct(no) 

        L1.append(co[0]) 

        fo = SVMLoss.formula(i) 

        L2.append(fo) 

    print(f"The Softmax loss is {L1}") 

    print(f"The SVM loss is {L2}") 

Output: 

The Softmax loss is [0.0003985108096053745, 0.23948939633540703, 0.0] 

The SVM loss is [0, 0, 0] 


